<p> 大家注意到最近 google 图标变成这个样子</p><p><img src="/content/uploadfile/200805/2008053116095940.gif" onclick="get_larger(this)" alt="分形 数学与艺术结合的明珠" /></p><p> 很多人不明白,这是什么意思,其实这是为了纪念法国数学家Gston Julia是,他发现了在数论中有名的julia序列,就是在这个google LOGO上面看到的数学公式。通过这个数学公式可以在解析几何上实现很多不规则边的图形。学名,也叫做分形。我们在网上搜索了一些资料,为大家做一下分形这个图形学上的概念普及。</p><p> 认识分形</p><p> 作为一门新兴学科,分形不但受到了科研人员的青睐,而且因为其广泛的应用价值,正受到各行各业人士的关注。那么,在我们开始学习分形之前,首先应该明白的一件事情是:什么是分形?</p><p> 严格地而且正式地去定义分形是一件非常复杂而且困难的事情。但是,有一些不太正规的定义却可以帮助我们理解分形的含义。在这些定义中,最为流行的一个定义是:分形是一种具有自相似特性的现象、图象或者物理过程。也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已。</p><p> 让我们来看下面的一个例子。下图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。而枝杈的枝杈也和整体相同,只是变得更加小了。那么,枝杈的枝杈的枝杈呢?自不必赘言。</p><p><img src="/content/uploadfile/200805/2008053116100042.gif" onclick="get_larger(this)" alt="分形 数学与艺术结合的明珠" /></p><p> 如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。其实,远远不止这些。从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。这正是研究分形的意义所在。例如,在道・琼斯指数中,某一个阶段的曲线图总和另外一个更长的阶段的曲线图极为相似。</p>